
Imagery Programmer's Reference
Imagery is a Windows Dynamic Linked Library designed to simplify graphics support for a host
application by providing a library of graphics related functions, including file input and output and several
image manipulation functions.

Features
Library Requirements

API Reference
Structures and Tables
Usage Notes

Shareware Notice
Registration Form
Credits and Copyright
Support

Imagery Copyright © Ursus Computing Pty. Ltd. 1995.
TIFF is a trademark of Aldus/Adobe.
Adobe PhotoShop is a registered trademark of Adobe Systems Inc.
Microsoft, Windows, Visual C++, Visual Basic are registered trademarks of Microsoft Corporation
Delphi is a registered trademark of Borland International.

Features
JPEG support:

Baseline JPEG
CMYK JPEG
Thumbnail in JPEG support (registered version)

TIFF support:
CMYK TIFF
JPEG TIFF
Tiled TIFF files

PNG support:
Conforms to the PNG Spec v1.0
Read/write interlaced PNG files

other formats:
Windows Bitmap
Silicon Graphics
SUN Raster
PhotoShop 2.5
Zsoft PCX
Portable Pixmap
Targa

Image Processing:
Contrast/Brightness/Gamma alteration
Colour space conversion (Floyd-steinberg dithering)
Increase Noise
Pixel scattering
Pixel Blurring, Averaging and Sharpening
Embossing
Flip
Rotate
Resize/Resample
Equalize/Normalize
5x5 Matrix operations

API Reference
InitLib
EndLib

ReadImage
WriteImage
GetFileInfo

AddNoise
AverageImage
BlurImage
CombineChannels
CropImage
DetectEdges
DisplaceImage
EmbossImage
EqualizeImage
FilterImage
FlipImage
GammaCorrect
GetChannel
InvertImage
NormalizeImage
PutChannel
ResampleImage
ResizeImage
RotateImage
SharpenImage
TuneImage

Library Requirements
Hardware:
Imagery requires an absolute minimum of a 386 processor, however Imagery functions most efficiently
with a 486 or greater. Although the amount of memory required to successfully process an image
depends on image size, 8 MB of RAM is required for effective functionality.

Software:
The 16-bit version requires Windows™ 3.1 or higher and a compiler which supports calling functions in a
DLL. If the 32-bit DLL is used, a 32-bit compiler is required and Windows NT™ or Windows 95™ is
recommended.

InitLib
Syntax: UINT InitLib(UINT reserved, HWND hWnd, UINT wm_message);

Purpose: Initialize user defined variables and functional state.

Parameter Description
reserved Reserved for future use
hWnd Window handle of calling application
wm_message Message to send, range from WM_USER to 7FFFH

Notes: InitLib should be called before any other function of the Imagery library is called. The ideal place
to call InitLib is in the WinMain function before the main message loop, or in the instance initialization
function.

InitLib is used to communicate vital instance specific information relating to the host application. The first
parameter is reserved and currently has no function, the second parameter is the window handle of the
calling application. The window handle provided is used to send messages to and is used to display
message boxes if a fatal error occurs. The third parameter is used to give a message handle to Imagery
so that status information (percentage complete) can be sent to the calling application using a Windows
message. The message is usually received in the main message loop.

If the message handle is not in the range WM_USER to 7FFFH no messages are sent to the calling
application (useful in Visual Basic). The current percentage of completion of the function being called is
the wParam of the message.

If InitLib is not called before using other functions in Imagery the shareware message will be displayed
every time a function in the library is called.

Return: If successful and a valid message handle was given then the return will be the given message
handle. If the message handle supplied was invalid or initialization failed the return value is 0.

EndLib
Syntax: int EndLib(void);

Purpose: Perform cleanup of library state initialised in InitLib

Notes: EndLib needs no parameters, cleanup is done by setting all global settings of the library to NULL
also all separate library components are de-initialised and any memory allocated in InitLib is freed.

Return: If successful EndLib returns TRUE otherwise if de-initialisation failed FALSE will be returned.

ReadImage
Syntax: HANDLE ReadImage(LPSTR filename);

Purpose: Reads any supported image format into a DIB handle

Parameter Description
filename Full pathname of the image file

Notes: ReadImage will read any supported file format into an appropriate DIB handle. To determine how
to interpret the image file header is read to find any format specific features, if no such features exist in
the first few bytes then ReadImage will fail.

If the image file being read is grayscale the returned DIB will be an 8-bit DIB with a grayscale palette.

Return: If successful ReadImage returns a DIB handle otherwise 0 is returned.

WriteImage
Syntax: UINT WriteImage(LPSTR filename, HANDLE hDIB, WriteOptions* Options);

Purpose: Write any supported image format from a DIB handle

Parameter Description
filename Full pathname of the image file
hDIB Handle to a DIB
Options WriteOptions structure containing format specific information

Notes: WriteImage uses the information provided in the WriteOptions structure to write the appropriate
format with the desired attributes. If the values in the WriteOptions structure are inconsistent or
unpractical then default values will be used.

If an 8-bit image is passed to WriteImage and the requested output file format is does not support a
palette based colorspace then it is assumed the DIB is grayscale.

Return: If successful WriteImage will return TRUE, if there is an error FALSE will be returned.

Example: This Example function is a small piece of code which writes a JPEG file with 4:1:1 sampling
and a quality factor of 80, followed by a TIFF file with 16 kb strips.

void Write_Test_File(HANDLE hDIB) /* Function Write_Test_File, write the given DIB to a JPEG and a
TIFF file */
{

WriteOptions FileOptions; /* declare structure*/
UINT ret;

FileOptions.FileFormat = FILE_JPEG; /* set file format option to JPEG */
FileOptions.ImageClass = IMG_RGB_24; /* set colorspace to 24-bit RGB */
FileOptions.JPEGSampling = SAMPLE_411; /* set sampling factors to 4:1:1 */
FileOptions.JPEGQuality = 80; /* set jpeg quality to 80 (very high quality) */
ret = WriteImage("testfile.jpg", hDIB, &FileOptions); /* write the JPEG file */
FileOptions.FileFormat = FILE_TIFF; /* set file format to TIFF */
FileOptions.ImageClass = IMG_RGB_24; /* set colorspace to 24-bit RGB*/
FileOptions.SegmentSize = 16; /* set strip size to 16 kb per strip */
FileOptions.Compression = TIFF_NONE; /* set compression to none */
ret = WriteImage("testfile.tif", hDIB, &FileOptions); /* write the TIFF */
return;

}

GetFileInfo
Syntax: int GetFileInfo(LPSTR filename, FileInfo *Image_info);

Purpose: Fetches simple information on any supported file format

Parameter Description
filename Name of the image file
Image_info FileInfo structure to receive JPEG information

Notes: GetFileInfo decodes the header of any supported file and fills a FileInfo structure with the
information retrieved. If GetFileInfo cannot successfully decode the header of an image file then the file
is not readable

Return: If successful the message handle is returned otherwise it is 0.

GetChannel
Syntax: HANDLE GetChannel(HANDLE hDIB, int index);

Purpose: Get a specified channel from a DIB

Parameter Description
hDIB DIB with multiple channels
index 0 based index of the component to retrieve

Note: GetChannel retrieves a specified channel from a 24-bit DIB. This could be used to retrive the Red
channel (channel 0) from a DIB and then modify the channel without affecting other channels (ie Green
and Blue).

Return: If successful a DIB handle is returned otherwise it is 0.

PutChannel
Syntax: HANDLE PutChannel(HANDLE hDIB, HANDLE hDIBchannel int index);

Purpose: Put a specified channel into a DIB

Parameter Description
hDIB DIB with multiple channels
hDIBchannel DIB with single channel
index 0 based index of the component to set

Note: PutChannel may be used to put a colour channel into a DIB after the channel has been affected.
The following example shows how PutChannel and GetChannel can be used to switch Red and Blue
channels:

HANDLE SwitchChannels (HANDLE hDIB)
{
HANDLE hDIBred,hDIBblue; /* Declare local variables*/

hDIBred = GetChannel (hDIB, 0); /* Retrieve red channel */
hDIBblue = GetChannel (hDIB, 2); /* Retrieve blue channel */
hDIB = PutChannel (hDIB, hDIBblue, 0); /* Replace red with blue*/
hDIBblue = GlobalFree (hDIBblue); /* Free Blue channel */
hDIB = PutChannel (hDIB, hDIBred, 2); /* Replace blue with red*/
hDIBred = GlobalFree (hDIBred); /* Free Red channel */
return hDIB; /* Return DIB with switched channels*/
}

Return: If successful a DIB handle is returned otherwise it is 0.

CombineChannels
Syntax: HANDLE CombineChannels(HANDLE hDIBRed, HANDLE hDIBGreen, HANDLE hDIBBlue);

Purpose: Combine 3 grayscale channels to create an RGB DIB

Parameter Description
hDIBRed Handle to the Red component DIB
hDIBGreen Handle to the Green component DIB
hDIBBlue Handle to the Blue component DIB

Note: CombineChannels combines 3 grayscale DIBs representing Red, Green and Blue. The difference
between calling CombineChannels once and PutChannel 3 times is that CombineChannels allocates the
memory for the 24-bit DIB and fills the BITMAPINFOHEADER correctly, also if 3 channels are to be
combined this is more efficient.

Return: If successful a DIB handle is returned otherwise it is 0.

ColorConvert
Syntax: HANDLE ColorConvert(HANDLE hDIB,int imgclass)

Purpose: Convert a DIB to a different color space

Parameter Description
hDIB Handle to the DIB
imgclass Type of image data format and colorspace desired

Note: This function is not currently designed for speed or selection of conversion methods. Currently
supported conversions are:
From
IMG_RGB_24:

IMG_RGB_8 - 2-pass Floyd-Steinberg dithering
IMG_GRAY_8 - basic RGB -> GRAY conversion

IMG_RGB_8:
IMG_RGB_24 - simple upsample
IMG_GRAY_8 - sets palette to grays

IMG_GRAY_8:
IMG_RGB_24 - simple upsample
IMG_RGB_8 - makes sure there is a palette associated with a DIB

Return: If successful a DIB handle is returned otherwise it is 0.

GammaCorrect
Syntax: HANDLE GammaCorrect(HANDLE hDIB,float red, float green, float blue)

Purpose: Gamma Correct an image

Parameter Description
hDIB Handle to a DIB
red red correction value between 0.1 and 7.0
green green correction value between 0.1 and 7.0
blue blue correction value between 0.1 and 7.0

Note: If the gamma value is below 1 the image is darkened, if the value is above 1 the image is
lightened

Return: If successful a DIB handle is returned otherwise it is 0.

AddNoise
Syntax: HANDLE AddNoise(HANDLE hDIB,int amount,int type)

Purpose: Add a specified amount of noise to an image

Parameter Description
hDIB Handle to a DIB
amount amount of noise to add
type type of noise, currently does little

Note: The higher the amount the more noise is introduced to the DIB

Return: If successful a DIB handle is returned otherwise it is 0.

CropImage
Syntax: HANDLE CropImage(HANDLE hDIB, RECT CropRect);

Purpose: Scale an image, without arbritary aspect ratios

Parameter Description
hDIB Handle to a DIB
CropRect RECT structure defining cropping rectangle

Return: If successful a DIB handle is returned otherwise it is 0.

DisplaceImage
Syntax: HANDLE DisplaceImage(HANDLE hDIB,int amount);

Purpose: Scatter the pixels of an image by a specified amount

Parameter Description
hDIB Handle to a DIB
amount amount to displace pixels

Note: The higher the amount the further apart the pixels are scattered

Return: If successful a DIB handle is returned otherwise it is 0.

FlipImage
Syntax: HANDLE FlipImage(HANDLE hDIB, int direction);

Purpose: Flip a DIB vertically or horizontally

Parameter Description
hDIB Handle to the DIB
direction Direction in which to flip, 0 for horizontal, 1 for vertical

Return: If successful a DIB handle is returned otherwise it is 0.

InvertImage
Syntax: HANDLE InvertImage(HANDLE hDIB);

Purpose: Invert/Negative an image

Parameter Description
hDIB Handle to a DIB

Return: If successful a DIB handle is returned otherwise it is 0.

RotateImage
Syntax: HANDLE RotateImage(HANDLE hDIB, float degree);

Purpose: Rotates an image by a specified amount

Parameter Description
hDIB Handle of the DIB to be embossed
degree degree to rotate DIB

Note: The rotation algorithm used is not currently efficient, both in speed or memory usage, this is
largely due to the use of anti-aliasing to smooth the edges of the new DIB.

Return: If successful a DIB handle is returned otherwise it is 0.

ResizeImage
Syntax: HANDLE ResizeImage(HANDLE hDIB, int width, int height);

Purpose: Resize the width and height of a DIB

Parameter Description
hDIB Handle of the DIB to be resized
width New Width of DIB
height New Height of DIB

Note: ResizeImage is an interface to the Windows API and in the process of resizing the DIB is
transferred to a DDB. This means that if the DIB is not compatible with the DC the DIB could be
subjected to Windows dithering.

Return: If successful a DIB handle is returned otherwise it is 0.

EmbossImage
Syntax: HANDLE EmbossImage(HANDLE hDIB, BYTE level);

Purpose: Smooths or averages the pixels of an Image

Parameter Description
hDIB Handle of the DIB to be embossed
level Emboss depth, (1-7)

Note: If the source DIB was RGB data then the embossed image will not be grayscaled, if the source is
paletted the image is assumed to be grayscale, that is the palette is a gradient of gray values.

Return: If successful a DIB handle is returned otherwise it is 0.

NormalizeImage
Syntax: HANDLE NormalizeImage(HANDLE hDIB);

Purpose: Normalize the color range of the image

Parameter Description
hDIB Handle of the DIB be equalized

Note: NormalizeImage creates a histogram from the pixel values in hDIB and normalizes the range of
values in the histogram. The histogram is then remapped to the DIB. The histogram creation is not
reported in the progress reporting since it does not take long to create.

Return: If successful a DIB handle is returned otherwise it is 0.

ComputeImage
Syntax: HANDLE ComputeImage(HANDLE hDIB1,HANDLE hDIB2,HANDLE hDIBalpha,int method,int

blend,BOOL alpha){

Purpose: Perform a computation on the pixels of an image

Parameter Description
hDIB1 Handle of source DIB
hDIB2 Handle of destination DIB
hDIBalpha Handle of alpha mask
method Computation to be performed
blend Percentage to blend Source and destination
alpha Alpha mask is used if TRUE

Notes: The blend argument is only necessary is the BLEND operation is performed, it is the percentage
of the first source image to blend with the second source image. The different types of computations
available are:

Definition Computation
C_ ADD Add the pixel values of hDIB1 and hDIB2
C_ SUBTRACT Subtract pixel values of hDIB2 from hDIB1
C_ DIFFERENCE Find the difference between the pixel values of hDIB1 and hDIB2
C_ COMPOSITE A simple composite of hDIB1 and hDIB2 using the supplied mask
C_ BLEND Blend the pixels by a specified opacity (requires blend to be in range 1..99)
C_ MULTIPLY Multiply the pixel values together and divide the result by 255
C_ LIGHTER Compare the pixels of both images, using only the lighter pixels
C_ DARKER Compare the pixels of both images, using only the darker pixels

Return: If ComputeImage is successful a handle to the computed DIB is returned, otherwise 0 is
returned

CompositeImage
Syntax: HANDLE CompositeImage(HANDLE hDIB1,HANDLE hDIBa1,HANDLE hDIB2,HANDLE

hDIBa2,int mask_method, int method,int opacity,BOOL channels[3], int x, int y)

Purpose: Composite two DIBs with optional alpha masks

Parameter Description
hDIB1 Handle of source DIB
hDIBa1 Handle of source alpha mask
hDIB2 Handle of destination DIB
hDIBa2 Handle of destination alpha mask
mask_method Computation on mask to be performed
method Computation to be performed
opacity Percentage to blend Source and destination
channels TRUE for channel to be used in composite
x X Position of composite
y Y Position of composite

Notes: The blend argument is only necessary is the BLEND operation is performed, it is the percentage
of the first source image to blend with the second source image. The different types of computations
available are:

Definition Computation
C_ ADD Add the pixel values of the two images together
C_ SUBTRACT Subtract pixel values from Source Image 1
C_ DIFFERENCE Find the difference between the pixel values of the images
C_ COMPOSITE A simple composite of images using the mask from SImage
C_ BLEND Blend the pixels by a specified opacity
C_ MULTIPLY Multiply the pixel values together and divide the result by 255
C_ LIGHTER Compare the pixels of both images, using only the lighter pixels
C_ DARKER Compare the pixels of both images, using only the darker pixels

Return: If CompositeImage is successful a handle to the composited DIB is returned, otherwise 0 is
returned

EqualizeImage
Syntax: HANDLE EqualizeImage(HANDLE hDIB);

Purpose: Equalize the color range of the image

Parameter Description
hDIB Handle of the DIB be equalized

Note: EqualizeImage creates a histogram from the pixel values in hDIB and equalizes the range of
values in the histogram. The histogram is then remapped to the DIB. The histogram creation is not
reported in the progress reporting since it does not take long to create.

Return: If successful a DIB handle is returned otherwise it is 0.

ResampleImage
Syntax: HANDLE ResampleImage(HANDLE hDIB, int new_width, int new_height);

Purpose: Resize an image using a higher quality method

Parameter Description
hDIB Handle of the DIB be equalized
new_width New width of the DIB
new_height New height of the DIB

Note: Unlike ResizeImage ResampleImage uses an anti-aliasing resampling algorithm. This means that
features of the image which might be left jaggy by ResizeImage are smoothed to look like the original
image was made at the resampled size. The disadvantages of the algorithm is that it is a great deal
slower than ResizeImage.

Return: If successful a DIB handle to the resampled image is returned, otherwise 0 is returned.

DetectEdges
Syntax: HANDLE DetectEdges(HANDLE hDIB);

Purpose: Detect Edges of a DIB

Parameter Description
hDIB Handle of the DIB to have edges detected

Note: DetectEdges uses a 3x3 matrix to 'Detect' the edges of an image.

Return: If DetectEdges is successful a DIB handle with the processed image is returned otherwise 0 is
returned.

SharpenImage
Syntax: HANDLE SharpenImage(HANDLE hDIB, int amount);

Purpose: Sharpens the pixels of an image

Parameter Description
hDIB Handle of the DIB to be sharpened
amount amount of sharpening (1-99)

Note: SharpenImage uses a 3x3 matrix to sharpen the pixels of an image. To see visible results the
amount of sharpening should be 10 or more.

Return: If SharpenImage is successful a DIB handle to the sharpened image is returned, if sharpen
image failed 0 will be returned.

BlurImage
Syntax: HANDLE BlurImage(HANDLE hDIB, int amount);

Purpose: Blurs the pixels of an Image

Parameter Description
hDIB Handle of the DIB to be blurred
amount amount of blurring (1-99)

Note: BlurImage uses a 3x3 matrix to blur an image, increasing the amount of blurring should not
significantly affect the amount of time taken to blur an image since the amount of blurring alters the
weights of the matrix. To see visible effects a factor of 10 should be used.

Return: If BlurImage is successful a DIB handle to the blurred image is returned, if BlurImage failed then
0 will be returned.

AverageImage
Syntax: HANDLE AverageImage(HANDLE hDIB, int amount);

Purpose: Averages the pixels of an Image

Parameter Description
hDIB Handle of the DIB to be averaged
amount amount of averaging (1-99)

Note: BlurImage uses a 5x5 matrix to average an image, increasing the amount of averaging should not
significantly affect the amount of time taken to average an image since the amount of averageing alters
the weights of the matrix. AverageImage is similar to BlurImage in effect except it is a lot more
noticeable.

Return: If AverageImage is successful a DIB handle to the averaged image is returned, if AverageImage
failed then 0 will be returned.

FilterImage
(registered version only)
Syntax: HANDLE FilterImage(HANDLE hDIB, int factor, int bias, int matrix[25]);

Purpose: Perform a transformation of image data.

Parameter Description
hDIB Handle of the DIB to be transformed
factor factor to divise matrix convolution
bias bias to be added to pixels
matrix The array which holds the matrix values

Note: This function allows the use of a matrix which can be used to perform various effects on an image.
A matrix can be used to sharpen, emboss, blur and detect the edges of an image. Hue, Saturation and
Luminance can also be adjusted by using a matrix.
The steps taken to perform a matrix convolution are:
1. Pixel values and corresponding matrix values are multiplied together.
2. The resulting values are added together for each pixel.
3. The sum is then divided by the factor (which must not be zero).
4. The bias is added to the final pixel values.

Return: If successful a DIB handle is returned otherwise it is 0.

TuneImage
Syntax: HANDLE TuneImage(HANDLE hDIB, int brightness[3], int contrast[3], int type);

Purpose: Tune image brightness and contrast.

Parameter Description
hDIB Handle of the DIB to be transformed
brightness Array of red,green and blue brightening percentages
contrast Array of red,green and blue contrast percentages
type currently unused.

Note: TuneImage 'Tunes' the brightness and contrast of an image. The brightening algorithm used in
this function is more accurate and more efficient than the one used in BrightenImage, so it should be
used instead of BrightenImage.

The brightness and contrast percentages must be in the range of -100 and 100. Each element in the
array passed to the TuneImage is the percentage used for each color component, the array is in red,
green, blue order.

If contrast of brightness must stay the same then set the unwanted parameter to NULL.

Return: If successful a DIB handle to the tuned image is returned, if TuneImage failed then 0 will be
returned.

Structures and Tables
WriteOptions
FileInfo
Format Support Table
Definition Tables

WriteOptions
typedef struct WriteOptions{

int ImageClass;
BOOL bWriteAlpha;
BOOL bWritePreview;
int JPEGQuality;
int Compression;
int FileFormat;
int SegmentSize;
BOOL bPredictor;
int JPEGSampling;
LPSTR szComments;
BOOL bInterlaced;

} WriteOptions;

Field Description
ImageClass Colorspace of destination image
bWriteAlpha TRUE if alpha should be written (registered version only)
bWritePreview TRUE if preview should be written (registered version only)
JPEGQuality quality factor for JPEG, range of 5 - 95
Compression compression method for TIFF
FileFormat Destination file format
SegmentSize strip size for TIFF, must be 4,8 or 16
bPredictor TRUE if horizontal prediction should be used in LZW TIFF
JPEGSampling sampling factors for JPEG files
lpComments Comments to be put in the file (none if NULL)
bInterlaced TRUE if interlacing should be used for a PNG file

FileInfo
typedef struct FileInfo{

int Width;
int Height;
DWORD ImageSize;
int BitsPerPixel;
DWORD FileSize;
int ImageClass;
int FileFormat;
char szComments[80];
int CompressionRatio;
int CompressionMethod;
HANDLE hPreview;
DWORD PreviewSize;
int PreviewWidth;
int PreviewHeight;
BYTE Colormap[3][256];
int JPEGQuality;
int JPEGSampling;
LPSTR szJPEGType;
BOOL bInterlaced;
int bPreview;
int bReadable;
int bMask;

} FileInfo;

Field Description
Width Width in pixels of image
Height Height in pixels of image
ImageSize Image size in bytes of image data
BitsPerPixel number of bits per pixel (4,8,16,24,32)
FileSize size in bytes of image file
ImageClass color space of image data
FileFormat file format of image file
szComments comments found in header
CompressionRatio currently unused
CompressionMethod type of compression (TIFF definitions)
hPreview DIB with image preview if one is found
PreviewSize size in bytes of preview image data
PreviewWidth width in pixels of preview image
PreviewHeight height in pixels of preview image
Colormap colormap of image
JPEGQuality Approximate JPEG quality factor used in encoding
JPEGSampling Sampling factors for JPEG file
szJPEGType Literal description of the JPEG encoding method
bInterlaced TRUE if a PNG file is interlaced
bPreview TRUE if there is a preview image in file
bReadable TRUE if the file is supported and readable
bMask TRUE if there is an alpha channel (also refferred to as a mask)

Format Support Table
This table is a listing of supported file types and the supported sub-types of various file types.

Format ColorSpace Compression Imagery Limitations
SUN Raster Palette/Gray none,RLE Cannot compress RLE

RGB none,RLE
RGBA none,RLE

Silicon Graphics Gray none,RLE Cannot compress RLE
RGB none,RLE
RGBA none,RLE

Compuserve GIF Palette/Gray LZW Restricted (legal reasons)
Windows/OS2 BMP Palette/Gray none RLE BMP files unsupported

RGB none
Zsoft PCX Palette/Gray

RGB
Portable Pixmap Gray none Only reads binary data

RGB none
Truevision Targa Palette none,RLE Cannot compress RLE

Gray none,RLE Cannot write 16-bit
RGB none,RLE
RGBA none,RLE

JPEG Gray JPEG Baseline only
RGB JPEG
YCbCr JPEG
CMYK JPEG

TIFF Palette / Palette A none,LZW LZW restricted
Gray / Gray A none,LZW,JPEG cannot support 1-bit,4-bit, 16-bit
RGB / RGBA none,LZW no RLE/FAX support
YCbCr / YCbCrA none,LZW,JPEG
CMYK / CMYKA none,LZW,JPEG

PhotoShop Bitmap Palette / Palette A none,RLE Cannot compress RLE
Gray / Gray A none,RLE Cannot read all PhotoShop 3.0
RGB / RGB A none,RLE files
CMYK / CMYK A none,RLE

PNG Palette LZW
Gray / Gray A LZW
RGB / RGBA LZW

Key:
Palette- 8-bit color space with up to 256 values, each value is an index in a color palette
Gray - 8-bit color space with 256 levels of gray.
RGB - 24-bit RGB color space with 256 levels of red, green and blue, may be BGR order
CMYK- 32-bit CMYK color space, 256 levels of cyan, magneta, yellow and black.
YCbCr- also known as YUV, Luminance and two chrominace components,used in JPEG.
A - alpha channel, referred to as a mask.

Definition Tables
File Definition Table
TIFF Compression Table
Colorspace Table
Sampling Factors Table

File Definition Table
File Type Value Description
FILE_BMP 0 Windows style BMP file
FILE_OS2 1 OS/2 style BMP file
FILE_GIF 2 Compuserve GIF (unsupported)
FILE_PPM 3 Portable Pixmap
FILE_TGA 5 Truevision TARGA
FILE_TIFF 6 Aldus TIFF
FILE_PSD 7 Adobe PhotoShop Bitmap
FILE_PCX 8 Zsoft PCX
FILE_SGI 9 Silicon Graphics image file
FILE_SUNRAS 11 SUN Raster file
FILE_PNG 12 Portable Network Graphics format
FILE_JPEG 13 JPEG

TIFF Compression Table
TIFF compression Type Value Description
TIFF_NONE 0 No compression
TIFF_LZW 1 LZW style compression (unsupported)
TIFF_PACK 2 PackBits compression
TIFF_JPEG 8 JPEG compression

Colorspace Table
Colorspace Value Description
IMG_RGB_24 0 24 bpp, BGR/RGB order
IMG_RGB_8 2 8 bpp, paletted
IMG_GRAY_8 5 8 bpp, gray palette/ no palette
IMG_CMYK 6 32 bpp, CMYK
IMG_YCbCr 8 24 bpp

Sampling Factors Table
JPEG sampling factors Value Description
SAMPLE_NONE 0 1:1:1 sampling, RGB/YCbCr/grayscale
SAMPLE_411 1 4:1:1 sampling, RGB/YCbCr
SAMPLE_422 2 4:2:2 sampling, RGB/YCbCr
SAMPLE_2112 3 2:1:1:2 sampling, CMYK
SAMPLE_1111 4 1:1:1:1 sampling, CMYK

Usage Notes
To use Imagery in a C/C++ compiler include imagery.h in the program and link with imagery.lib, or use
the LoadLibrary function to load the DLL dynamically. Visual Basic currently has no equivalent BAS file
for imagery.h, so before calling a function from Visual Basic the appropriate declarations must be made,

the same applies for Pascal compilers and Delphi and other similar products. There is work on a BAS
file for Visual Basic.

It should be noted that for functions which accept a DIB as a parameter will return a modified version of
the DIB, this means where possible Imagery will try to modify the pixels of the DIB passed to it, rather
than create a new DIB. Some functions however will change the size of the image data, requiring a new
DIB to be created. The following example shows this:

hDIB=InvertImage(hDIB);

This will not lose any memory, provided InvertImage is successful.

The function definitions used by Imagery refer to Windows™ definitions. These definitions may be found
in windows.h and other related files.

Shareware Notice
Imagery is distributed as shareware software. Imagery may be evaluated without charge for 30 days,
after the evaluation period Imagery must be registered if it is to be used further. The shareware version
cannot be distributed with any software, shareware or otherwise without prior permission. If Imagery is
used to develop an application for profit then Imagery must be registered.

The registered version of Imagery has many advantages, free technical support and free maintenance
upgrades. Also several functions have extended functionality, and those functions marked as 'registered
version only' are fully functional. The registered version is also less verbose and reports all messages to
the calling application.

Upon registration you will receive the fully functional Imagery DLL. As mentioned you will receive any
maintenance upgrades free. If you are interested in registering Imagery and would like more information
on the registered version, e-mail Support

The registration fee of US $50.00 (or AUS $65.00) for a developers version or US $10.00 for the end
user version may be paid by mail using the Registration Form.

Site and source code licensing is also available contact .Support for more information.

Registration Form
Mail this form to:

Ursus Computing Pty. Ltd.
PO BOX 116
Adelaide 5000
South Australia
Australia

Please Include a cheque/money order for US $50.00 (or AUS $65.00) for
the development version, or US $10.00 (or AUS $15.00) for the end-user
version. The Cheque should be made out to Ursus Computing Pty. Ltd.

Full Name: __

Company Name: ___

Development Environment: __

Development/Target Hardware configuartion:

E-Mail Address: ___

Full Postal Address:

How did you discover/get Imagery:

Recommendations for future versions:

Method of delivery: ___

Credits and Copyright
Imagery:
Copyright (c) 1995 Ursus Computing Pty. Ltd.

Permission to use, copy and distribute this software and its documentation for evaluation
purposes is hereby granted without fee, provided that:
(i) The above copyright notices and this permission notice appear in all copies of the
software and related documentation
(ii) If the software is used after the 30 day evaluation period it must be registered
(iii) If the software is to be used to develop a shareware or commercial application
it must be registered
(ii) If the software is distributed with an accompanying program then the full package must
also be distributed, this includes the programmers reference and sample program(s)

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL Ursus Computing BE LIABLE FOR ANY SPECIAL,
INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

TIFF Library:
Copyright (c) 1988, 1989, 1990, 1991, 1992, 1993, 1994 Sam Leffler.
Copyright (c) 1991, 1992, 1993, 1994 Silicon Graphics, Inc.

Permission to use, copy, modify, distribute, and sell this software and
its documentation for any purpose is hereby granted without fee, provided
that (i) the above copyright notices and this permission notice appear in
all copies of the software and related documentation, and (ii) the names of
Sam Leffler and Silicon Graphics may not be used in any advertising or
publicity relating to the software without the specific, prior written
permission of Sam Leffler and Silicon Graphics.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

JPEG Library:
The JPEG component of Imagery was based on the code written by the Independent JPEG Group and
is:
Copyright (c) 1991-1994, Thomas G. Lane.

PNGLib:
Copyright (c) 1995 Guy Eric Schalnat, Group 42, Inc. & contributing authors.

Support
Postal Address
Registration Forms and payment of registration should be sent to:

Ursus Computing Pty. Ltd.
P.O. Box 116
Adelaide 5000
South Australia
Australia

E-Mail Address
Questions relating to Imagery should be sent to:

ursus@magna.com.au

$ Stuff to do# Stuff_to_doK Stuff to do

